Diferència entre revisions de la pàgina «Quine: paradoxes»
De Wikisofia
(adding es) |
(modificant original) |
||
Línia 1: | Línia 1: | ||
− | {{ | + | {{PendentRev}}{{RecursWiki|Tipus=Extractes d'obres}}{{RecursBase|Nom=Quine: paradoxes|Idioma=Español}} |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | {{RecursWiki|Tipus=Extractes d'obres}}{{RecursBase|Nom=Quine: paradoxes|Idioma=Español}} | ||
Existeix l'antiga paradoxa d'Epimènides, el cretenc, qui va afirmar que tots els cretencs eren mentiders. Si deia veritat, ell era un mentider. Sembla que aquesta paradoxa va aconseguir l'atenció de sant Pau i que a aquest se li va escapar el seu abast. En la seva Epístola a Tito, li avisava: «Un d'ells mateixos, un profeta sorgit d'entre ells, va dir: "Els cretencs són sempre mentiders"». | Existeix l'antiga paradoxa d'Epimènides, el cretenc, qui va afirmar que tots els cretencs eren mentiders. Si deia veritat, ell era un mentider. Sembla que aquesta paradoxa va aconseguir l'atenció de sant Pau i que a aquest se li va escapar el seu abast. En la seva Epístola a Tito, li avisava: «Un d'ells mateixos, un profeta sorgit d'entre ells, va dir: "Els cretencs són sempre mentiders"». | ||
Revisió del 00:12, 25 maig 2017
Existeix l'antiga paradoxa d'Epimènides, el cretenc, qui va afirmar que tots els cretencs eren mentiders. Si deia veritat, ell era un mentider. Sembla que aquesta paradoxa va aconseguir l'atenció de sant Pau i que a aquest se li va escapar el seu abast. En la seva Epístola a Tito, li avisava: «Un d'ells mateixos, un profeta sorgit d'entre ells, va dir: "Els cretencs són sempre mentiders"».
En realitat la paradoxa d'Epimènides no està bé tallada. Hi ha algunes fuites. Tal vegada alguns cretencs eren mentiders, en particular Epimènides, i uns altres no ho eren. Tal vegada Epimènides era un mentider que ocasionalment deia la veritat. En qualsevol cas dels dos, la contradicció desapareix. Es pot salvar una mica d'aquesta paradoxa amb una petita reparació, però farem millor si ens passem a una formulació diferent i més simple, també antiga de la mateixa idea. Aquesta és la paradoxa del Pseudomenon, qui afirma simplement: «jo estic mentint». Fins i tot podem deixar a un costat l'indirecte d'una referència personal i afirmar directament de la sentència: «aquesta sentència és falsa». Aquí semblem aconseguir l'essència irreductible de l'antinòmia: una sentència que és veritable si i només si és falsa. En un esforç per aclarir aquesta antinòmia s'ha afirmat que la frase «aquesta sentència», usada d'aquesta forma, no es refereix a res. S'afirma això per la raó que no podem lliurar-nos d'aquesta frase proporcionant o formulant una sentència a la qual es refereixi. Perquè, a quina sentència es refereix la frase? A la sentència «aquesta sentència és falsa». Si, per tant, substituïm la frase «aquesta sentència» citant la sentència al fet que es refereix, obtenim: «"aquesta sentència és falsa" és falsa». Però la sentència exterior sencera atribueix falsedat no ja a si mateixa, sinó merament a alguna cosa diferent de si mateixa, i així no s'engendra cap paradoxa.
No obstant això, si amb tenacitat tractem encara de construir una sentència que atribueixi falsedat inequívocament a si mateixa, la podem fer de la següent manera: «"produeix falsedat quan s'afegeix a la seva pròpia cita" produeix falsedat quan s'afegeix a la seva pròpia cita». Aquesta sentència especifica una cadena de 9 paraules i diu d'aquesta cadena que, si l'escrivim dues vegades, amb cometes al voltant de la primera de les dues vegades, el resultat és fals. Però aquest resultat és un relat produït per la mateixa sentència. La sentència és veritable si i només si és falsa i així tenim la nostra antinòmia.
Aquesta és una antinòmia genuïna, igual que la que s'ha presentat sobre «heterològic», o «fals sobre si mateix» sent veritable de si mateixa. Però mentre que les anteriors es referien a «veritable sobre» a través de la construcció «no veritable de si mateix», la nostra nova paradoxa es refereix merament a «veritable» a través de la construcció «falsedat» o «proposició no veritable». Podem evitar ambdues antinòmies i altres relacionades amb elles deixant d'usar «veritable de» i «veritable», i els seus equivalents i derivats, o almenys deixant d'aplicar tals locucions de veritat a adjectius o sentències que continguin elles mateixes tals locucions de veritat.
Aquesta restricció pot ser alguna cosa ampliada admetent una jerarquia de locucions de veritat, com ha estat suggerit en l'obra de Bertrand Russell i del matemàtic polonès Alfred Tarski [...]. Les expressions «veritable», «veritable sobre», «fals», i altres relacionades amb elles, poden ser usades amb subíndexs numèrics, «0», «1», «2», etc., subíndex que s'escriuen o s'imaginen. És a dir,
Llavors podem evitar les antinòmies cuidant, quan una locució de veritat (T) s'aplica a una sentència o a una altra expressió (S), que el subíndex en (T) sigui superior a qualsevol subíndex dins de S. Les violacions a aquesta restricció serien tractades com sense sentit, o contra la gramàtica, més aviat que com a sentències veritables o falses. Per exemple, podríem preguntar-nos amb sentit si els adjectius «llarg» i «breu» són
de si mateixos. Les respostes són respectivament no i sí. Però no podem parlar amb sentit de la frase
Hauríem de preguntar-nos
i això és qüestió que no condueix a cap antinòmia. En qualsevol de les dues formes aquesta qüestió pot ser resposta amb una negativa simple i sense perill.
Aquest punt mereix insistència. Mentre que «llarg» i «breu» són adjectius que poden aplicar-se amb sentit a si mateixos, falsament en un cas i veritablement en un altre, al contrari
són frases adjectives que no poden en absolut ser aplicades a si mateixes amb sentit ni veritablement ni falsament. Per tant, la qüestió
té una resposta negativa. La frase adjectiva
Considerem ara a continuació, en termes de subíndexs, la versió anterior més perversa del pseudomenon. Per donar-li un sentit ple, hem d'introduir ara subíndexs en les dues aparicions de la paraula «falsedat», i en ordre ascendent, de la següent manera:
Immediatament desapareix la paradoxa. Aquesta sentència és inequívocament falsa. El que ens afirma és que una certa forma descrita de paraules
Així la sentència precedent, que deia que aquesta forma de paraules
Això pot semblar una manera estranya d'eliminar antinòmies. Però seria molt més costós l'ometre la paraula «veritable», i locucions relacionades amb ella, d'una vegada per sempre. A un cost intermedi es podrien merament deixar d'aplicar tals locucions a expressions que continguin tals locucions. Qualsevol altre mètode és menys econòmic que aquest mètode dels subíndexs. Els subíndexs ens capaciten per aplicar locucions de veritat a expressions contenint tals locucions, si bé en una manera que desconcerta una mica per la seva diferència amb el que estem acostumats. Cadascun d'aquests artificis és desesperat. Cadascun és una separació artificial de l'ús natural i establert. Tal és el que causen les antinòmies.
Paradoja, en Matemáticas en el mundo moderno, Selecciones de «Scientific American», Blume, Madrid-Barcelona 1974, p. 227-228. |
Original en castellà
Existe la antigua paradoja de Epiménides, el cretense, quien afirmó que todos los cretenses eran mentirosos. Si decía verdad, él era un mentiroso. Parece que esta paradoja alcanzó la atención de san Pablo y que a éste se le escapó su alcance. En su Epístola a Tito, le avisaba: «Uno de ellos mismos, un profeta surgido de entre ellos, dijo: "Los cretenses son siempre mentirosos"».
En realidad la paradoja de Epiménides no está bien cortada. Hay algunos escapes. Tal vez algunos cretenses eran mentirosos, en particular Epiménides, y otros no lo eran. Tal vez Epiménides era un mentiroso que ocasionalmente decía la verdad. En cualquier caso de los dos, la contradicción desaparece. Se puede salvar algo de esta paradoja con una pequeña reparación, pero haremos mejor si nos pasamos a una formulación diferente y más simple, también antigua de la misma idea. Ésta es la paradoja del Pseudomenon, quien afirma simplemente: «yo estoy mintiendo». Incluso podemos dejar a un lado lo indirecto de una referencia personal y afirmar directamente de la sentencia: «esta sentencia es falsa». Aquí parecemos alcanzar la esencia irreductible de la antinomia: una sentencia que es verdadera si y sólo si es falsa. En un esfuerzo para aclarar esta antinomia se ha afirmado que la frase «esta sentencia», usada de esta forma, no se refiere a nada. Se afirma esto por la razón de que no podemos librarnos de esta frase proporcionando o formulando una sentencia a la cual se refiera. Porque, ¿a qué sentencia se refiere la frase? A la sentencia «esta sentencia es falsa». Si, por lo tanto, sustituimos la frase «esta sentencia» citando la sentencia a que se refiere, obtenemos: «"esta sentencia es falsa" es falsa». Pero la sentencia exterior entera atribuye falsedad no ya a sí misma, sino meramente a algo distinto de sí misma, y así no se engendra ninguna paradoja.
Sin embargo, si con tenacidad tratamos todavía de construir una sentencia que atribuya falsedad inequívocamente a sí misma, la podemos hacer de la siguiente manera: «"produce falsedad cuando se añade a su propia cita" produce falsedad cuando se añade a su propia cita». Esta sentencia especifica una cadena de 9 palabras y dice de esta cadena que, si la escribimos dos veces, con comillas alrededor de la primera de las dos veces, el resultado es falso. Pero ese resultado es un relato producido por la misma sentencia. La sentencia es verdadera si y sólo si es falsa y así tenemos nuestra antinomia.
Ésta es una antinomia genuina, al igual que la que se ha presentado acerca de «heterológico», o «falso acerca de sí mismo» siendo verdadera de sí misma. Pero mientras que las anteriores se referían a «verdadero acerca de» a través de la construcción «no verdadero de sí mismo», nuestra nueva paradoja se refiere meramente a «verdadero» a través de la construcción «falsedad» o «proposición no verdadera». Podemos evitar ambas antinomias y otras relacionadas con ellas dejando de usar «verdadero de» y «verdadero», y sus equivalentes y derivados, o al menos dejando de aplicar tales locuciones de verdad a adjetivos o sentencias que contengan ellas mismas tales locuciones de verdad.
Esta restricción puede ser algo ampliada admitiendo una jerarquía de locuciones de verdad, como ha sido sugerido en la obra de Bertrand Russell y del matemático polaco Alfred Tarski [...]. Las expresiones «verdadero», «verdadero acerca de», «falso», y otras relacionadas con ellas, pueden ser usadas con subíndices numéricos, «0», «1», «2», etc., subíndice que se escriben o se imaginan. Es decir,
Entonces podemos evitar las antinomias cuidando, cuando una locución de verdad (T) se aplica a una sentencia o a otra expresión (S), de que el subíndice en (T) sea superior a cualquier subíndice dentro de S. Las violaciones a esta restricción serían tratadas como sin sentido, o contra la gramática, más bien que como sentencias verdaderas o falsas. Por ejemplo, podríamos preguntarnos con sentido si los adjetivos «largo» y «breve» son
de sí mismos. Las respuestas son respectivamente no y sí. Pero no podemos hablar con sentido de la frase
Tendríamos que preguntarnos
y esto es cuestión que no conduce a ninguna antinomia. En cualquiera de las dos formas esta cuestión puede ser respondida con una negativa simple y sin peligro.
Este punto merece insistencia. Mientras que «largo» y «breve» son adjetivos que pueden aplicarse con sentido a sí mismos, falsamente en un caso y verdaderamente en otro, al contrario
son frases adjetivas que no pueden en absoluto ser aplicadas a sí mismas con sentido ni verdaderamente ni falsamente. Por tanto, la cuestión
tiene una respuesta negativa. La frase adjetiva
Consideremos ahora a continuación, en términos de subíndices, la versión anterior más perversa del pseudomenon. Para darle un sentido pleno, tenemos que introducir ahora subíndices en las dos apariciones de la palabra «falsedad», y en orden ascendente, de la siguiente manera:
Inmediatamente desaparece la paradoja. Esta sentencia es inequívocamente falsa. Lo que nos afirma es que una cierta forma descrita de palabras
Así la sentencia precedente, que decía que esta forma de palabras
Esto puede parecer un modo extraño de eliminar antinomias. Pero sería mucho más costoso el omitir la palabra «verdadero», y locuciones relacionadas con ella, de una vez por todas. A un coste intermedio se podrían meramente dejar de aplicar tales locuciones a expresiones que contengan tales locuciones. Cualquier otro método es menos económico que este método de los subíndices. Los subíndices nos capacitan para aplicar locuciones de verdad a expresiones conteniendo tales locuciones, si bien en una manera que desconcierta un poco por su diferencia con lo que estamos acostumbrados. Cada uno de estos artificios es desesperado. Cada uno es una separación artificial del uso natural y establecido. Tal es lo que causan las antinomias.