Diferència entre revisions de la pàgina «Paradoxa de Cantor»
De Wikisofia
m (bot: - del propi Cantor, + del mateix Cantor,) |
m (bot: - d'incloure-ho com + d'incloure'l com) |
||
(Una revisió intermèdia per un altre usuari que no es mostra) | |||
Línia 1: | Línia 1: | ||
{{ConcepteWiki}} | {{ConcepteWiki}} | ||
− | [[paradoxa|Paradoxa]] matemàtica publicada per [[Autor:Cantor, Georg|G. Cantor]] en 1932, però descoberta per ell en 1905, que fa de la noció del «conjunt de tots els conjunts» una noció [[contradictoris|contradictòria]]. El conjunt potència (el conjunt dels subconjunts d'un conjunt), per un teorema del mateix Cantor, és | + | [[paradoxa|Paradoxa]] matemàtica publicada per [[Autor:Cantor, Georg|G. Cantor]] en 1932, però descoberta per ell en 1905, que fa de la noció del «conjunt de tots els conjunts» una noció [[contradictoris|contradictòria]]. El conjunt potència (el conjunt dels subconjunts d'un conjunt), per un teorema del mateix Cantor, és més gran que el seu propi conjunt. Però el conjunt de tots els conjunts ha d'incloure'l com a subconjunt propi. Per tant, el conjunt potència és i no és més gran que el seu propi conjunt. |
{{Etiqueta|Etiqueta=Lògica}}{{InfoWiki}} | {{Etiqueta|Etiqueta=Lògica}}{{InfoWiki}} |
Revisió de 14:19, 3 nov 2018
Paradoxa matemàtica publicada per G. Cantor en 1932, però descoberta per ell en 1905, que fa de la noció del «conjunt de tots els conjunts» una noció contradictòria. El conjunt potència (el conjunt dels subconjunts d'un conjunt), per un teorema del mateix Cantor, és més gran que el seu propi conjunt. Però el conjunt de tots els conjunts ha d'incloure'l com a subconjunt propi. Per tant, el conjunt potència és i no és més gran que el seu propi conjunt.